$\left[\mathrm{MoBr}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)(\mathrm{CO})_{2}\right] . \frac{1}{4} \mathrm{CH}_{2} \mathrm{Cl}_{2}$
may be explicable in terms of the relative π-acceptor capabilities of the groups trans to the phosphine.

In both molecules, the CO group cis to the Br atom has the C atom ca $0.13 \AA(11 \sigma)$ further away from the Mo atom than expected. Abnormal bond lengths of this type are symptomatic of halogen-carbonyl disorder (Payne \& Ibers, 1969) and it is possible that the crystal contains a small amount of trans- $\left[\operatorname{MoBr}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right.$ $\left.(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\right]$.

We thank the Science Research Council for financial aid.

References

Bush, M. A., Hardy, A. D. U., Manojlović-Muir, LJ. \& Sim, G. A. (1971). J. Chem. Soc. A, pp. 1003-1009.
Churchill, M. R. \& Fennessey, J. P. (1968). Inorg. Chem. 7, 953-959.

Drew, M. G. B. (1972a). J. Chem. Soc. Dalton Trans. pp. 1329-1333.
Drew, M. G. B. (1972b). J. Chem. Soc. Dalton Trans. pp. 626-631.
Hardy, A. D. U. \& Sim, G. A. (1972). J. Chem. Soc. Dalton Trans. pp. 1900-1903.
Ibers, J. A., Hamilton, D. S. \& Baddley, W. H. (1973). Inorg. Chem. 12, 229-232.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

La Placa, S. J. \& Ibers, J. A. (1965). J. Am. Chem. Soc. 87, 2581-2586.
McPhail, A. T., Knox, G. R., Robertson, C. G. \& Sim, G. A. (1971). J. Chem. Soc. A, pp. 205-214.

Manojlović-Muir, LJ., Muir, K. W. \& Ibers, J. A. (1969). Discuss. Faraday Soc. 47, 84-92.
Payne, N. C. \& Ibers, J. A. (1969). Inorg. Chem. 8, 27142718.

Stewart, J. M., Kundell, F. A. \& Baldwin, J. C. (1970). The XRAY 70 system. Computer Science Center, Univ. of Maryland, College Park, Maryland.

Acta Cryst. (1979). B35, 2406-2408

Structure of trans-Dicarbonyl($\boldsymbol{\eta}$-cyclopentadienyl)iodo(phenyl isocyanide)molybdenum

By George A. Sim, James G. Sime and David I. Woodhouse
Chemistry Department, University of Glasgow, Glasgow G12 8QQ, Scotland
and Graham R. Knox
Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G11XL, Scotland

(Received 8 June 1979; accepted 3 July 1979)

Abstract

C}_{14} \mathrm{H}_{10} \mathrm{IMoNO}_{2},\left[\mathrm{Mo}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}\right)(\mathrm{CO})_{2} \mathrm{I}\right]\), orthorhombic, Pbca, $a=12.035$ (4), $b=17.248$ (5), c $=14.510(5) \AA, U=3012 \AA^{3}, D_{m}=1 \cdot 95, Z=8, D_{c}=$ $1.972 \mathrm{Mg} \mathrm{m}^{-3}, F(000)=1696, \mu($ Mo $K(\alpha)=2.93$ mm^{-1}. The structure was refined to $R=0.040$ for 1471 diffractometer data. The $\mathrm{Mo}-\mathrm{I}$, Mo-C(isocyanide) and mean Mo-C(carbonyl) lengths are 2.858 (1), 2.025 (10) and 1.978 (7) \AA, respectively.

Introduction. $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{CO})_{2}(\mathrm{CNPh}) \mathrm{I}$ was prepared by treatment of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{CO})_{3}$ I with phenyl isocyanide (Joshi, Pauson \& Stubbs, 1963/64). The crystal used for the X-ray study was selected from a mixture of the cis and trans isomers. Mo Krr radiation was employed and X-ray intensities for reflections with $\theta<27^{\circ}$ were measured by the $\omega-2 \theta$ step-scan procedure on a Hilger \& Watts four-circle diffractometer fitted with a graphite monochromator. The 1564 reflections that were above background on a preliminary rapid scan were recorded. Of these, 1471 satis-

fied the criterion $I>3 \sigma(I)$ and were used in the subsequent analysis.

The coordinates of the Mo and I atoms were deduced from a Patterson synthesis and the remaining atoms located in an electron-density distribution. The atomic parameters were then adjusted by least squares and when R had been reduced to 0.043 a difference synthesis revealed the H atoms. These were included at the positions taken from the difference map and further refinement converged at $R=0.040, R_{w}=0.056$. The weighting scheme was

$$
w=\left[1-\exp \left(-p_{1} \sin ^{2} \theta / \lambda^{2}\right)\right] /\left[1+p_{2}\left|F_{o}\right|+p_{3}\left|F_{o}\right|^{2}\right]
$$

and in the final stages p_{1}, p_{2} and p_{3} were assigned the values $90.0,0.54$ and 0.01 , respectively. Scattering factors, with dispersion corrections for Mo and I, were taken from International Tables for X-ray Crystallography (1962). The calculations were performed with programs developed for the Glasgow University KDF9 © 1979 International Union of Crystallography

Table 1. Atomic coordinates ($\times 10^{5}$ for Mo and $\mathrm{I}, \times 10^{4}$ for C, N and O)

	x	y	z
Mo	$64036(6)$	$18578(4)$	$39509(5)$
I	$87306(5)$	$15570(4)$	$37895(5)$
C(1)	$5325(8)$	$2712(5)$	$3608(6)$
N(2)	$4737(8)$	$3209(5)$	$3396(7)$
C(3)	$4022(8)$	$3832(5)$	$3234(7)$
C(4)	$3230(9)$	$3760(6)$	$2541(8)$
C(5)	$2518(10)$	$4388(8)$	$2399(10)$
C(6)	$2561(11)$	$5023(8)$	$2931(10)$
C(7)	$3385(14)$	$5115(6)$	$3588(9)$
C(8)	$4110(10)$	$4493(7)$	$3768(7)$
C(9)	$5530(10)$	$631(6)$	$3907(8)$
C(10)	$6376(12)$	$575(7)$	$4557(9)$
C(11)	$6191(10)$	$1120(7)$	$5267(8)$
C(12)	$5148(11)$	$1492(6)$	$5056(8)$
C(13)	$4774(9)$	$1209(6)$	$4209(9)$
C(14)	$7052(8)$	$2794(6)$	$4518(6)$
O(15)	$7367(7)$	$3360(5)$	$4847(6)$
C(16)	$6678(8)$	$1989(5)$	$2612(7)$
O(17)	$6788(7)$	$2077(5)$	$1827(5)$

Table 2. Bond lengths (\AA)

Mo-I	$2.858(1)$	$\mathrm{N}(2)-\mathrm{C}(3)$	$1.397(13)$
Mo-C(9)	$2.363(11)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.392(15)$
$\mathrm{Mo}-\mathrm{C}(10)$	$2.382(12)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.395(17)$
$\mathrm{Mo}-\mathrm{C}(11)$	$2.309(11)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.342(20)$
$\mathrm{Mo}-\mathrm{C}(12)$	$2.293(12)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.385(20)$
$\mathrm{Mo}-\mathrm{C}(13)$	$2.289(11)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.409(17)$
$\mathrm{Mo}-\mathrm{C}(14)$	$1.973(10)$	$\mathrm{C}(8)-\mathrm{C}(3)$	$1.381(15)$
$\mathrm{C}(14)-\mathrm{O}(15)$	$1.150(12)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.390(18)$
$\mathrm{Mo}-\mathrm{C}(16)$	$1.983(10)$	$\mathrm{C}(10)-\mathrm{C}(11)$	$1.412(17)$
$\mathrm{C}(16)-\mathrm{O}(17)$	$1.158(11)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.443(17)$
$\mathrm{Mo}-\mathrm{C}(1)$	$2.025(10)$	$\mathrm{C}(12)-\mathrm{C}(13)$	$1.396(17)$
$\mathrm{C}(1)-\mathrm{N}(2)$	$1.153(13)$	$\mathrm{C}(13)-\mathrm{C}(9)$	$1.418(15)$

Table 3. Valency angles $\left({ }^{\circ}\right)$

Mo-C(1)	137.7 (3)	$\mathrm{C}(8)-\mathrm{C}(3)-\mathrm{C}(4)$	$122 \cdot 1$ (9)
$\mathrm{I}-\mathrm{Mo}-\mathrm{C}(14)$	78.2 (3)	C(3)-C(4)-C(5)	117.2 (10)
I-Mo-C(16)	$77 \cdot 1$ (3)	C(4)-C(5)-C(6)	121.7 (12)
$\mathrm{C}(1)-\mathrm{Mo}-\mathrm{C}(14)$	$76 \cdot 2$ (4)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	121.2(12)
$\mathrm{C}(1)-\mathrm{Mo}-\mathrm{C}(16)$	77.5 (4)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	118.9 (11)
$\mathrm{C}(14)-\mathrm{Mo}-\mathrm{C}(16)$	104.4 (4)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(3)$	118.5 (10)
Mo-C(14)-O(15)	175.9 (9)	$\mathrm{C}(13)-\mathrm{C}(9)-\mathrm{C}(10)$	108.0 (10)
$\mathrm{Mo}-\mathrm{C}(16)-\mathrm{O}(17)$	176.8 (9)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	109.4 (11)
$\mathrm{Mo}-\mathrm{C}(1)-\mathrm{N}(2)$	177.8 (9)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$106 \cdot 2$ (10)
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(3)$	174.2 (11)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$108 \cdot 1$ (10)
$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	118.3 (9)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(9)$	$108 \cdot 1$ (10)
$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(8)$	119.6 (9)		

computer by D. W. J. Cruickshank, J. G. F. Smith and J. G. Sime.*

Discussion. The atomic coordinates, bond lengths, valency angles and intermolecular contacts are given in

[^0]Table 4. Intermolecular contacts $(\leq 3.70 \AA)$

$\mathrm{C}(13) \cdots \mathrm{O}(15)^{\mathrm{I}}$	$3.29(2)$	$\mathrm{C}(6) \cdots \mathrm{O}(17)^{\mathrm{III}}$	$3.65(2)$
$\mathrm{C}(12) \cdots \mathrm{O}(15)^{\mathrm{I}}$	$3.36(2)$	$\mathrm{C}(6) \cdots \mathrm{C}(1)^{\mathrm{I}}$	$3.67(2)$
$\mathrm{C}(4) \cdots \mathrm{O}(17)^{\mathrm{II}}$	$3.37(2)$	$\mathrm{C}(7) \cdots \mathrm{C}(16)^{\mathrm{III}}$	$3.67(2)$
$\mathrm{C}(7) \cdots \mathrm{O}(17)^{\mathrm{III}}$	$3.44(2)$	$\mathrm{C}(6) \cdots \mathrm{C}(9)^{\mathrm{III}}$	$3.67(2)$
$\mathrm{C}(4) \cdots \mathrm{O}(17)^{\mathrm{IV}}$	$3.51(2)$	$\mathrm{C}(4) \cdots \mathrm{O}(15)^{\mathrm{IV}}$	$3.68(2)$
$\mathrm{C}(4) \cdots \mathrm{C}(16)^{\mathrm{IV}}$	$3.59(2)$	$\mathrm{C}(4) \cdots \mathrm{C}(14)^{\mathrm{IV}}$	$3.70(2)$
$\mathrm{C}(7) \cdots \mathrm{O}(15)^{\mathrm{V}}$	$3.59(2)$	$\mathrm{C}(5) \cdots \mathrm{C}(9)^{\mathrm{III}}$	$3.70(2)$
$\mathrm{C}(6) \cdots \mathrm{C}(16)^{\mathrm{III}}$	$3.60(2)$		

The superscripts refer to the following transformations of the atomic coordinates:
$\begin{array}{lrl}\text { (I) } & \frac{1}{2}+x, \frac{1}{2}-y, 1-z & \text { (IV) }-\frac{1}{2}+x, \\ \text { (II) } & x, \frac{1}{2}-y, & \frac{1}{2}+z\end{array} \quad$ (V) $1-x, 1-y, \quad 1-z$.

Fig. 1. The $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{CO})_{2}(\mathrm{CNPh}) \mathrm{I}$ molecule, viewed along the perpendicular to the $\mathrm{C}_{5} \mathrm{H}_{5}$ ring. The ellipsoids are shown at the 50\% probability level.

Tables 1-4. The atom numbering is shown in Fig. 1 and the crystal structure in Fig. 2.

The trans $\mathrm{I}-\mathrm{Mo}-\mathrm{CNPh}$ and $\mathrm{OC}-\mathrm{Mo}-\mathrm{CO}$ angles of 138 and 104° closely resemble $\mathrm{I}-\mathrm{Mo}-\mathrm{P}$ and $\mathrm{OC}-$ Mo-CO angles of 141 and 105° in trans- $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ $\mathrm{Mo}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)$ I (Bush, Hardy, Manojlović-Muir \& Sim, 1971), 136 and 109° in trans- $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ Mo$(\mathrm{CO})_{2}\left[\mathrm{P}(\mathrm{OMe})_{3}\right] \mathrm{I}$ (Hardy \& Sim, 1972) and 138 and 107° in trans- $\left(\eta^{3}-\mathrm{C}_{5} \mathrm{H}_{4} \cdot \mathrm{CH}_{3}\right) \mathrm{Mo}(\mathrm{CO})_{2}\left[\mathrm{P}(\mathrm{OMe})_{3}\right] \mathrm{I}$ (Hardy \& Sim, 1972).

The Mo-I separation of 2.858 (1) \AA may be compared with values of 2.836 (4), 2.850 (3) and 2.858 (3) \AA in $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{CO})_{2}\left[\mathrm{P}(\mathrm{OMe})_{3}\right] \mathrm{I},\left(\eta^{5}-\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{4} . \mathrm{CH}_{3}\right) \mathrm{Mo}(\mathrm{CO})_{2}\left[\mathrm{P}(\mathrm{OMe})_{3}\right] \mathrm{I}$ and $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}-$ $(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right) \mathrm{I}$, respectively. These distances exceed the $\mathrm{Mo}-\mathrm{Br}$ separation of 2.671 (3) \AA in $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}$ $(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right) \mathrm{Br}$ (Sim, Sime, Woodhouse \& Knox, 1979) by $0 \cdot 17-0.19 \AA$, in excellent agreement with the difference of $0.19 \AA$ between the covalent radii of I ($1.33 \AA$) and $\operatorname{Br}(1.14 \AA)$ atoms.

Fig. 2. The crystal structure viewed along a.

The Mo-CO lengths, 1.973 (10) and 1.983 (10) \AA, do not differ significantly and the mean, 1.978 (7) \AA, may be compared with the $1.96 \AA$ in $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ -
$\mathrm{Mo}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)(\mathrm{COMe})$ (Churchill \& Fennessey, 1968), $1.98 \AA$ in $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right) \mathrm{I}, 2.00 \AA$ in $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} . \mathrm{CH}_{3}\right) \mathrm{Mo}(\mathrm{CO})_{2}\left[\mathrm{P}(\mathrm{OMe})_{3}\right] \mathrm{I}$ and $2.02 \AA$ in $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{CO})_{2}\left[\mathrm{P}(\mathrm{OMe})_{3}\right]$ I. The $\mathrm{Mo}-\mathrm{CNPh}$ length of 2.025 (10) \AA is only slightly greater than the mean Mo-CO distance, indicating that the bond has significant double-bond character (Sim, Sime, Woodhouse \& Knox, 1974).

We thank the Science Research Council for financial support.

References

Bush, M. A., Hardy, A. D. U., Manojlović-Muir, LJ. \& Sim, G. A. (1971). J. Chem. Soc. A, pp. 1003-1009.
Churchil, M. R. \& Fennessey, J. P. (1968). Inorg. Chem. 7, 953-959.
Hardy, A. D. U. \& Sim, G. A. (1972). J. Chem. Soc. Dalton Trans. pp. 1900-1903.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Joshi, K. K., Pauson, P. L. \& Stubbs, W. H. (1963/64). J. Organomet. Chem. 1, 51-57.
Sim, G. A., Sime, J. G., Woodhouse, D. I. \& Knox, G. R. (1974). J. Organomet. Chem. 74, C7-C8.

Sim, G. A., Sime, J. G., Woodhouse, D. I. \& Knox, G. R. (1979). Acta Cryst. B35, 2403-2406.

Acta Cryst. (1979). B35, 2408-24 10

The Structure of $\operatorname{Bis}(\boldsymbol{N}$-methylethylenediamine)copper(II) Adipate Dihydrate

By R. Hämäläinen, U. Turpeinen and M. Ahlgrén
Department of Inorganic Chemistry, University of Helsinki, SF-00100 Helsinki 10, Finland

(Received 2 May 1979; accepted 6 July 1979)

Abstract. $\mathrm{C}_{6} \mathrm{H}_{20} \mathrm{CuN}_{4}^{2+} . \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{4}^{2-} .2 \mathrm{H}_{2} \mathrm{O}, \quad\left[\mathrm{Cu}\left(\mathrm{C}_{3} \mathrm{H}_{10}{ }^{-}\right.\right.$ $\left.\left.\mathrm{N}_{2}\right)_{2}\right]\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{4}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O}, M_{r}=391 \cdot 95$, triclinic, $P \overline{\mathrm{I}}, a=$ 7.241 (2), $b=8.271$ (3), $c=8.304$ (3) $\AA, ~ a=$ 89.92 (3), $\beta=114.87$ (2), $\gamma=90.45$ (2) ${ }^{\circ}, V=451.2$ $\AA^{3}, Z=1, D_{m}$ (flotation) $=1.43, D_{x}=1.443 \mathrm{Mg} \mathrm{m}^{-3}$, $\mu\left(\right.$ Mo $K(r)=1.29 \mathrm{~mm}^{-1}$. The structure was solved by direct methods and refined by the block-diagonal leastsquares technique, with anisotropic temperature parameters for nonhydrogen atoms and isotropic parameters for hydrogens, to an R value of 0.035 . The analysis was based on 1931 reflections with $I>2 \sigma(I)$. The four N atoms from the diamine molecules form the coordination plane around the Cu^{15} atom; the two water O atoms lying in axial positions complete the elongated octahedral coordination sphere. The adipate

0567-7408/79/102408-03\$01.00
group is hydrogen bonded to the N and water O atoms of the adjacent complex cations.

Introduction. The structures of some bis(N-methylethylenediamine)copper(II) carboxylates have been investigated previously in this laboratory (Hämäläinen, 1973; Hämäläinen \& Pajunen, 1973, 1974). The carboxylate groups in these bis compounds are joined to the cations by hydrogen bonds, giving rise to netlike structures. We have now synthesized a bis chelate using a longer-chain dicarboxylic acid, adipic acid, as the anion and studied the structure by X-ray analysis.

The title compound was synthesized by allowing 0.045 mol of the finely powdered Cu^{11} salt of adipic acid [prepared by the method of Rajan (1962)] to react (c) 1979 International Union of Crystallography

[^0]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 34581 (3 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

